If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2=14
We move all terms to the left:
7y^2-(14)=0
a = 7; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·7·(-14)
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{2}}{2*7}=\frac{0-14\sqrt{2}}{14} =-\frac{14\sqrt{2}}{14} =-\sqrt{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{2}}{2*7}=\frac{0+14\sqrt{2}}{14} =\frac{14\sqrt{2}}{14} =\sqrt{2} $
| (4+1/6)+(3/4x)=(5+2/3)+(1/2x) | | (4+1/6)+(3/4x)=(5+2/3)+(1/2x/ | | (4+1/2)+(3/4x)=(5+2/3)+0.5x | | 9=1-2x | | 19x=24x+10 | | 7.5=5.5g | | 6q-84=92 | | 6x+20=6x+8=2x+12 | | 4^x-3=9 | | 3/4x+41/6=1/2x+52/3 | | −6+3x−9x^2=−16 | | -12+2x=-10 | | -3x+13=19 | | ^x2+^x3=64 | | -29+7x=-8 | | 2^x+3^x=64 | | 2x+3x=64 | | (3n+1)(n+3)-n(3n+7)=3(n+1) | | 3(2q+5)=6(7+4q) | | 2x(x+5)=83 | | x^2+13x-25=0 | | 7m-12=5m+30 | | x^2+13x+55=0 | | x^2+13x+25=0 | | x^2+13+25=0 | | x^2+13+55=0 | | -2x+(-6)=-6 | | 5y+11.3=90 | | -48+11x=-70 | | -2q-3=-2(2q+10 | | 6+8x=10-4x | | 1⁄2(4e-16)=1⁄3(3e+6) |